main content of page
We'll deliver the Good Times Get parts, accessories and apparel shipped straight to your door. Free shipping on orders $100+. Shop Now
Professional rider(s) on a closed course.
- 2025 MODEL
- 2024
Absolute Domination
Professional rider(s) on a closed course.
- 2024 NINJA H2®R ABS
- SPECS
- GALLERY
- GET THE LATEST UPDATES
- COMPARE
- LOCATE A DEALER
SPECS GALLERY
-
MSRP
$58,100
Destination Charge $800
Dealer sets the actual destination charge, your price may vary.
Specifications and pricing are subject to change.
ORDER PERIOD IS NOW CLOSED.
- REQUEST A QUOTE
- SEE DEALER INVENTORY
- ESTIMATE A PAYMENT
- ADD TO MY KAWASAKI
- REQUEST A TEST RIDE
- SAFETY RESOURCES
MODEL SPECS |
Mirror Coated Matte Spark Black
998cc four-stroke
supercharged engine
Bosch IMU withKawasaki's
dynamic modeling software
Click on a technology to learn more.
Engine Management Technology
- Economical Riding Indicator
- Electronic Throttle Valves
- Kawasaki Engine Brake Control
- KLCM (Kawasaki Launch Control Mode)
- KCMF (Kawasaki Cornering Management Function)
- KTRC (Kawasaki Traction Control)
- KQS (Kawasaki Quick Shifter)
- Supercharged Engine
Chassis Management Technology
- ABS (Anti-lock Brake System)
- ERGO-FIT®
- IMU-Enhanced Chassis Orientation Awareness
- KIBS (Kawasaki Intelligent anti-lock Brake System)
- Silver-Mirror Paint
Engine | Liquid-cooled, 4-stroke, In-Line Four, DOHC, 16-valve |
---|---|
Displacement | 998cc |
Bore x Stroke | 76.0 x 55.0mm |
Compression Ratio | 8.3:1 |
Maximum Torque | 121.5 lb-ft @ 12,500 rpm |
Fuel System | DFI® with 50mm throttle bodies (4) with dual injection; Kawasaki Supercharger |
Ignition | Digital |
Transmission | 6-speed, return, dog-ring |
Final Drive | Sealed chain |
Electronic Rider Aids | Kawasaki Cornering Management Function (KCMF), Kawasaki TRaction Control (KTRC), Kawasaki Launch Control Mode (KLCM), Kawasaki Intelligent anti-lock Brake System (KIBS), Kawasaki Engine Brake Control (KEBC), Kawasaki Quick Shifter (KQS) (upshift & downshift), Öhlins Electronic Steering Damper |
Front Suspension / Wheel Travel | 43mm inverted fork with adjustable rebound and compression damping, spring preload adjustability and top-out springs/4.7 in |
---|---|
Rear Suspension / Wheel Travel | Uni-Trak®, Öhlins TTX36 gas charged shock with piggyback reservoir, 30-way compression and rebound damping adjustability, 16-way spring preload adjustability, and top-outspring/5.3 in |
Front Tire | 120/60 ZR17 V01F slick |
Rear Tire | 190/65 ZR17 V01R slick |
Front Brakes | Dual radial-mount, opposed 4-piston Brembo Stylema® calipers, dual semi-floating 330mm discs, Kawasaki Intelligent anti-lock Brake System (KIBS) |
Rear Brakes | Opposed 2-piston calipers, single 250mm disc, Kawasaki Intelligent anti-lock Brake System (KIBS) |
Frame Type | Trellis, high-tensile steel, with swingarm mounting plate |
---|---|
Rake/Trail | 25.1°/4.3 in |
Overall Length | 81.5 in |
Overall Width | 33.5 in |
Overall Height | 45.7 in |
Ground Clearance | 5.1 in |
Seat Height | 32.7 in |
Curb Weight | 476.3 lb* |
Fuel Capacity | 4.5 gal |
Wheelbase | 57.1 in |
Special Features | Aerodynamic downforce generating devices, Highly Durable Paint, Analog Tach & LCD instrumentation |
Color Choices | Mirror Coated Matte Spark Black |
VIEW WARRANTY INFO DOWNLOAD SPECS
*Curb weight includes all necessary materials and fluids to operate correctly, full tank of fuel (more than 90 percent capacity) and tool kit (if supplied). When equipped, California evaporative emissions equipment adds approximately 2.2 lb.
KAWASAKI CARES: Read Owner's Manual and all on-product warnings. Always wear a helmet, eye protection and proper apparel. Never ride under the influence of drugs or alcohol. Adhere to the maintenance schedule in your Owner’s Manual. ©2024 Kawasaki Motors Corp., U.S.A.
Specifications subject to change.
GALLERY |
- PHOTOS
- VIDEOS
Professional rider(s) on a closed course.
ORDER PERIOD IS NOW CLOSED.
ACCESSORIES & MERCHANDISE |
SHOP THIS VEHICLE'S ACCESSORIES SHOP ALL ACCESSORIES
FIND A KAWASAKI DEALER IN YOUR AREA
Zip Code or City, State
Using high-precision electronic control for engine management, Kawasaki models can achieve a high level of fuel efficiency. However, fuel consumption is greatly affected by throttle use, gear selection, and other elements under the rider's control. The Economical Riding Indicator is a function that indicates when current riding conditions are consuming a low amount of fuel. The system continuously monitors fuel consumption, regardless of vehicle speed, engine speed, throttle position and other riding conditions. When fuel consumption is low for a given speed (i.e. fuel efficiency is high), an "ECO" mark appears on the instrument panel's LCD screen. By riding so that the "ECO" mark remains on, fuel consumption can be reduced.
While effective vehicle speed and engine speed may vary by model, paying attention to conditions that cause the "ECO" mark to appear can help riders improve their fuel efficiency – a handy way to increase cruising range. Further, keeping fuel consumption low also helps minimize negative impact on the environment.
Economical Riding Indicator
Kawasaki’s fully electronic throttle actuation system enables the ECU to control the volume of both the fuel (via fuel injectors) and the air (via throttle valves) delivered to the engine. Ideal fuel injection and throttle valve position results in smooth, natural engine response and the ideal engine output. The system also makes a significant contribution to reduced emissions.
Electronic throttle valves also enable more precise control of electronic engine management systems like S-KTRC and KTRC, and allow the implementation of electronic systems like KLCM, Kawasaki Engine Brake Control, and Electronic Cruise Control.
Electronic Throttle Valves
The Kawasaki Engine Brake Control system allows riders to select the amount of engine braking they prefer. When the system is activated, the engine braking effect is reduced, providing less interference when riding on the track.
Designed to assist riders by optimizing acceleration from a stop, KLCM electronically manages engine output to minimize wheel spin when moving off. With the clutch lever pulled in and the system activated, engine speed is limited to a determined speed while the rider holds the throttle open. Once the rider releases the clutch lever to engage the clutch, engine speed is allowed to increase, but power is regulated to minimize wheel spin and help keep the front wheel on the ground. The system disengages automatically once a predetermined speed has been reached, or when the rider shifts into third gear. Depending on the model, riders can choose from multiple modes, each offering a progressively greater level of intrusion.
KLCM (Kawasaki Launch Control Mode)
Using the latest evolution of Kawasaki’s advanced modeling software and feedback from a compact IMU (Inertial Measurement Unit) that gives an even clearer real-time picture of chassis orientation, KCMF monitors engine and chassis parameters throughout the corner – from entry, through the apex, to corner exit – modulating brake force and engine power to facilitate smooth transition from acceleration to braking and back again, and to assist riders in tracing their intended line through the corner. The systems that KCMF oversees vary by model, but may include:
• S-KTRC/KTRC (including traction management and wheel lift management)
• KLCM (including traction management and wheel lift management)
- Designed to optimize acceleration from a stop
• KIBS (including pitching management and corner braking management)
• Kawasaki Engine Brake Control
KCMF (Kawasaki Cornering Management Function)
KTRC, Kawasaki's advanced traction control system provides both enhanced sport riding performance and the peace of mind to negotiate slippery surfaces with confidence. Multiple rider-selectable modes (the number of modes varies by model) offer progressively greater levels of intrusion to suit the riding situation and rider preference.
Less intrusive modes maintain optimum traction during cornering. Designed with sport riding in mind, they facilitate acceleration out of corners by maximizing forward drive from the rear wheel. And because Kawasaki’s sophisticated software bases its dynamic analysis on the chassis’ orientation relative to the track surface (rather than relative to a horizontal plane), it is able to take into account corner camber, gradient, etc., and adapt accordingly.
In the more intrusive modes (and for some models, in any mode), when excessive wheel spin is detected, engine output is reduced to allow grip to be regained, effectively enabling riders to negotiate both short, slippery patches (train tracks or manhole covers) and extended stretches of bad roads (wet pavement, cobblestone, gravel) with confidence.
Models equipped with IMU incorporate chassis-orientation feedback to offer even more precise management.
KTRC (Kawasaki Traction Control)
Designed to help riders maximize their acceleration on the track by enabling clutchless upshifts with the throttle fully open, KQS detects that the shift lever has been actuated and sends a signal to the ECU to cut ignition so that the next gear can be engaged without having to use the clutch. On models that offer clutchless downshifts, during deceleration the system automatically controls engine speed so that the next lower gear can be selected without operating the clutch.
KQS (Kawasaki Quick Shifter)
Drawing on the know-how and technology possessed by the Kawasaki Heavy Industries, Ltd. (KHI), Kawasaki’s supercharged engine delivers high engine output while maintaining a compact design. The key to achieving this incredible performance lies in the engine’s supercharger – a motorcycle-specific unit designed completely in-house with technology from the Kawasaki Gas Turbine & Machinery Company, Aerospace Company and Corporate Technology Division.
One of the greatest benefits of designing the supercharger in-house and tailoring its design to match the engine’s characteristics was that engineers were able to achieve high-efficiency operation over a wide range of conditions – something that would not have been possible by simply dropping in or trying to adapt an aftermarket automotive supercharger.
The importance of high efficiency in a supercharger is that, as the air is compressed, power-robbing heat gain is minimal. And while many superchargers are able to offer high-efficiency operation in a very limited range of conditions, the Kawasaki supercharger offers high efficiency over a wide range of pressure ratios and flow rates – meaning over a wide range of engine speeds and vehicle speeds. This wide range of efficient operation (similar to having a wide power band) easily translates to strong acceleration. The supercharger’s high efficiency and minimal heat gain also meant that an intercooler was unnecessary, greatly saving weight and space, and enabling the engine’s compact design.
Supercharged Engine
Previous Slide Next Slide
< PREVIOUS
NEXT >
Kawasaki ABS systems use front and rear wheel sensors to constantly monitor wheel speed. Should information from either of the sensors indicate that wheel lock has occurred, the ABS ECU directs the pump in the ABS unit to modulate brake fluid pressure (releasing and reapplying pressure so that traction can be regained) until normal operation resumes. ABS offers rider reassurance that contributes to greater riding enjoyment.
Proper fit is key for rider comfort and control. However, the ideal fit varies from rider to rider, depending on their physical dimensions and riding style.
ERGO-FIT® is an interface system designed to allow riders to find their ideal riding position. Various points of the chassis interface (the handlebar, footpegs and seat, etc.) can be adjusted through a combination of interchangeable parts and parts with adjustable positions. This enables a wide range of riders to find a riding position that offers both comfort and control. Feeling at one with their machine, they will be able to experience how Kawasaki machines are fun and rewarding to ride.
*Adjustable parts and their range of adjustability vary by model.
The strength of Kawasaki’s cutting-edge electronics has always been the highly sophisticated programming that, using minimal hardware, gives the ECU an accurate real-time picture of what the chassis is doing. Kawasaki’s proprietary dynamic modeling program makes skillful use of the magic formula tire model as it examines changes in multiple parameters, enabling it to take into account changing road and tire conditions.
The addition of an IMU (Inertial Measurement Unit) enables inertia along 6 DOF (degrees of freedom) to be monitored. Acceleration along longitudinal, transverse and vertical axes, plus roll rate and pitch rate are measured. The yaw rate is calculated by the ECU using Kawasaki original software. This additional feedback contributes to an even clearer real-time picture of chassis orientation, enabling even more precise management for control at the limit.
With the addition of the IMU and the latest evolution of Kawasaki’s advanced modeling software, Kawasaki’s electronic engine and chassis management technology takes the step to the next level – changing from setting-type and reaction-type systems to feedback-type systems – to deliver even greater levels of riding excitement.
IMU-Enhanced Chassis Orientation Awareness
Kawasaki developed KIBS to take into account the particular handling characteristics of supersport motorcycles, ensuring highly efficient braking with minimal intrusion during sport riding. It is the first mass-production brake system to link the ABS ECU (Electronic Control Unit) and engine ECU.
In addition to front and rear wheel speed, KIBS monitors front brake caliper hydraulic pressure, throttle position, engine speed, clutch actuation and gear position. This diverse information is analyzed to determine the ideal front brake hydraulic pressure. Through precise control, hydraulic pressure is modulated in much smaller increments than with standard ABS systems. The system limits rear wheel lift under heavy braking and takes downshifting into account while braking, allowing the rider to manage the rear brake. And because of the finer control, kickback to the brake lever is minimal, resulting in a very natural feeling.
Kawasaki’s high-quality original paint has a highly reflective, glasslike metal appearance. Its debut on the 2015 Ninja H2™ and Ninja H2™R marked its first use on a mass-production vehicle in either the automotive or motorcycle industry.
In the shade the paint has the appearance of its base coat color, but once in the sunlight its highly reflective surface takes on the appearance of the surrounding scenery. The stark difference in the way the paint appears in the light and the shade emphasizes the sculpted shape of the bodywork on which it is applied.
The highly reflective surface is created by inducing a silver mirror reaction (a chemical reaction between a solution of silver ions and a reducing agent) that forms a layer of pure silver (Ag). This Ag layer is what creates the paint’s glasslike metal appearance. Compared to candy paints, which use aluminum flakes to generate a sparkling effect, the Ag layer appears as a uniform metallic surface.
In the shade the Ag layer is translucent, allowing the base coat color to show through. This gives the paint a deep, three-dimensional quality.
While the multiple layers of paint on typical mass-production models are done by robot painters, for this silver-mirror paint each layer – from primer to clear coat – is carefully finished by the hands of Kawasaki craftsmen to ensure a flawless, lustrous surface.
Silver-Mirror Paint
Previous Slide Next Slide
< PREVIOUS
NEXT >